
Advanced Graphics

Subdivision
Surfaces

Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd

NURBS patches aren’t the greatest

● NURBS patches are nxm,
forming a mesh of quadrilaterals.
● What if you wanted triangles or

pentagons?
● A NURBS dodecahedron?

● What if you wanted vertices of valence other than
four?

● NURBS expressions for triangular patches,
and more, do exist; but they’re cumbersome.

Problems with NURBS patches
● Joining NURBS patches

with Cn continuity
across an edge is
challenging.

● What happens to
continuity at corners
where the number of
patches meeting isn’t
exactly four?

● Animation is tricky:
bending and blending
are doable, but not easy.

Sadly, the world isn’t made up of shapes that
can always be made from one smoothly-
deformed rectangular surface.

● The solution:
subdivision surfaces.

Subdivision surfaces

● Beyond shipbuilding:
we want guaranteed
continuity, without
having to build
everything out of
rectangular patches.
● Applications include

CAD/CAM, 3D
printing, museums and
scanning, medicine,
movies…

Geri’s Game, by Pixar (1997)

Subdivision surfaces

● Instead of ticking a parameter t along
a parametric curve (or the parameters
u,v over a parametric grid),
subdivision surfaces repeatedly refine
from a coarse set of control points.

● Each step of refinement adds new
faces and vertices.

● The process converges to a smooth
limit surface.

(Catmull-Clark in action)

Subdivision surfaces – History

● de Rahm described a 2D (curve) subdivision
scheme in 1947; rediscovered in 1974 by Chaikin

● Concept extended to 3D (surface) schemes by two
separate groups during 1978:
● Doo and Sabin found a biquadratic surface
● Catmull and Clark found a bicubic surface

● Subsequent work in the 1980s (Loop, 1987; Dyn
[Butterfly subdivision], 1990) led to tools suitable
for CAD/CAM and animation

Subdivision surfaces and the movies

● Pixar first demonstrated subdivision
surfaces in 1997 with Geri’s Game.
● Up until then they’d done everything in

NURBS (Toy Story, A Bug’s Life.)
● From 1999 onwards everything they did was

with subdivision surfaces (Toy Story 2,
Monsters Inc, Finding Nemo...)

● Two decades on, it’s all heavily customized.
● It’s not clear what Dreamworks uses,

but they have recent patents on
subdivision techniques.

Useful terms
● A scheme which describes a 1D curve (even if that curve is

travelling in 3D space, or higher) is called univariate, referring
to the fact that the limit curve can be approximated by a
polynomial in one variable (t).

● A scheme which describes a 2D surface is called bivariate, the
limit surface can be approximated by a u,v parameterization.

● A scheme which retains and passes through its original control
points is called an interpolating scheme.

● A scheme which moves away from its
original control points, converging to a
limit curve or surface nearby, is called an
approximating scheme.

Control surface for Geri’s head

How it works

● Example: Chaikin curve subdivision (2D)
● On each edge, insert new control points at ¼ and

¾ between old vertices; delete the old points
● The limit curve is C1 everywhere (despite the poor

figure.)

Notation

Chaikin can be written programmatically as:

…where k is the ‘generation’; each generation will
have twice as many control points as before.
Notice the different treatment of generating odd and
even control points.
Borders (terminal points) are a special case.

←Even

←Odd

Notation

Chaikin can be written in vector notation as:

Notation
● The standard notation compresses the scheme to a kernel:

● h =(1/4)[…,0,0,1,3,3,1,0,0,…]
● The kernel interlaces the odd and even rules.
● It also makes matrix analysis possible: eigenanalysis of

the matrix form can be used to prove the continuity of the
subdivision limit surface.
● The details of analysis are fascinating, lengthy, and sadly

beyond the scope of this course
● The limit curve of Chaikin is a quadratic B-spline!

Consider the kernel
h=(1/8)[…,0,0,1,4,6,4,1,0,0,…]

You would read this as

The limit curve is provably C2-continuous.

Reading the kernel

Making the jump to 3D: Doo-Sabin

Doo-Sabin takes Chaikin to 3D:
P =(9/16) A +

(3/16) B +
(3/16) C +
(1/16) D

This replaces every old vertex
with four new vertices.
The limit surface is biquadratic,
C1 continuous everywhere.

P

A
B

C
D

Doo-Sabin in action

(3) 702 faces(2) 190 faces

(0) 18 faces (1) 54 faces

Catmull-Clark

● Catmull-Clark is a bivariate approximating
scheme with kernel h=(1/8)[1,4,6,4,1].
● Limit surface is bicubic, C2-continuous.

16 16

1616

24 24

4 4

4 4

6
36

6

6

6

1 1

1 1

/64

Face

Vertex

Edge

Catmull-Clark

Getting tensor again:

Vertex rule Face rule Edge rule

Catmull-Clark in action

Catmull-Clark vs Doo-Sabin

Doo-Sabin

Catmull-Clark

Extraordinary vertices
● Catmull-Clark and Doo-Sabin both

operate on quadrilateral meshes.
● All faces have four boundary edges
● All vertices have four incident edges

● What happens when the mesh contains
extraordinary vertices or faces?
● For many schemes, adaptive weights exist

which can continue to guarantee at least
some (non-zero) degree of continuity, but
not always the best possible.

● CC replaces extraordinary faces with
extraordinary vertices; DS replaces
extraordinary vertices with extraordinary
faces.

Detail of Doo-Sabin at cube
corner

Extraordinary vertices: Catmull-Clark

Catmull-Clark vertex
rules generalized for
extraordinary vertices:
● Original vertex:

(4n-7) / 4n
● Immediate neighbors in

the one-ring:
3/2n2

● Interleaved neighbors in
the one-ring:

1/4n2

Image source: “Next-Generation Rendering of Subdivision
Surfaces”, Ignacio Castaño, SIGGRAPH 2008

Schemes for simplicial (triangular) meshes

● Loop scheme: ● Butterfly scheme:

Vertex

Edge

Vertex

Edge

Split each triangle
into four parts

10

11

11

1 1

16

0 0

0

00

0

00

0 0

6

6

22

2

2

8 8

-1-1

-1 -1

(All weights are /16)

Loop subdivision

Loop subdivision in action. The asymmetry is due to the choice of face diagonals.
Image by Matt Fisher, http://www.its.caltech.edu/~matthewf/Chatter/Subdivision.html

Creases

Extensions exist for most schemes to support
creases, vertices and edges flagged for partial or
hybrid subdivision.

Still from “Volume
Enclosed by
Subdivision Surfaces
with Sharp Creases”
by Jan Hakenberg,
Ulrich Reif, Scott
Schaefer, Joe Warren
http://vixra.
org/pdf/1406.
0060v1.pdf

http://vixra.org/pdf/1406.0060v1.pdf
http://vixra.org/pdf/1406.0060v1.pdf
http://vixra.org/pdf/1406.0060v1.pdf
http://vixra.org/pdf/1406.0060v1.pdf

Continuous level of detail

For live applications (e.g. games) can compute
continuous level of detail, e.g. as a function of
distance:

Level 5 Level 5.2 Level 5.8

Direct evaluation of the limit surface

● In the 1999 paper Exact Evaluation Of Catmull-
Clark Subdivision Surfaces at Arbitrary Parameter
Values, Jos Stam (now at Alias|Wavefront)
describes a method for finding the exact final
positions of the CC limit surface.
● His method is based on calculating the tangent and normal

vectors to the limit surface and then shifting the control
points out to their final positions.

● What’s particularly clever is that he gives exact evaluation
at the extraordinary vertices. (Non-trivial.)

Bounding boxes and convex hulls for
subdivision surfaces
● The limit surface is (the weighted average of (the weighted

averages of (the weighted averages of (repeat for eternity…))))
the original control points.

● This implies that for any scheme where all weights are positive
and sum to one, the limit surface lies entirely within the
convex hull of the original control points.

● For schemes with negative weights:
● Let L=maxt Σi |Ni(t)| be the greatest sum throughout parameter

space of the absolute values of the weights.
● For a scheme with negative weights, L will exceed 1.
● Then the limit surface must lie within the convex hull of the

original control points, expanded unilaterally by a ratio of (L-1).

Splitting a subdivision surface
Many algorithms rely on subdividing a surface and
examining the bounding boxes of smaller facets.
● Rendering, ray/surface intersections…

It’s not enough just to delete half your control points: the
limit surface will change (see right)
● Need to include all control points from the previous

generation, which influence the limit surface in this
smaller part.

(Top) 5x Catmull-Clark subdivision of a cube
(Bottom) 5x Catmull-Clark subdivision of two halves of a cube;
the limit surfaces are clearly different.

Ray/surface intersection
● To intersect a ray with a subdivision surface,

we recursively split and split again,
discarding all portions of the surface whose
bounding boxes / convex hulls do not lie on
the line of the ray.

● Any subsection of the surface which is ‘close
enough’ to flat is treated as planar and the
ray/plane intersection test is used.

● This is essentially a binary tree search for the
nearest point of intersection.
● You can optimize by sorting your list of

subsurfaces in increasing order of distance
from the origin of the ray.

Rendering subdivision surfaces
● The algorithm to render any subdivision surface is exactly the

same as for Bezier curves:
“If the surface is simple enough, render it directly;
otherwise split it and recurse.”

● One fast test for “simple enough” is,
“Is the convex hull of the limit surface
sufficiently close to flat?”

● Caveat: splitting a surface and
subdividing one half but not the
other can lead to tears where
the different resolutions meet. →

Figure from Generic Mesh Renement on GPU,
Tamy Boubekeur & Christophe Schlick (2005)
LaBRI INRIA CNRS University of Bordeaux, France

Rendering subdivision surfaces on the GPU

● Subdivision algorithms have been ported to the
GPU, often using geometry shaders.
● This subdivision can be done completely independently of

geometry, imposing no demands on the CPU.
● Uses a complex blend

of precalculated weights
and shader logic

● Impressive effects
in use at id, Valve,
et al

Subdivision Schemes—A partial list
● Approximating

● Quadrilateral
● (1/2)[1,2,1]
● (1/4)[1,3,3,1]

(Doo-Sabin)
● (1/8)[1,4,6,4,1]

(Catmull-Clark)
● Mid-Edge

● Triangles
● Loop

● Interpolating
● Quadrilateral

● Kobbelt
● Triangle

● Butterfly
● “√3” Subdivision

Many more exist, some much
more complex
This is a major topic of
ongoing research

References
Catmull, E., and J. Clark. “Recursively Generated B-Spline Surfaces on Arbitrary
Topological Meshes.” Computer Aided Design, 1978.
Dyn, N., J. A. Gregory, and D. A. Levin. “Butterfly Subdivision Scheme for
Surface Interpolation with Tension Control.” ACM Transactions on
Graphics. Vol. 9, No. 2 (April 1990): pp. 160–169.
Halstead, M., M. Kass, and T. DeRose. “Efficient, Fair Interpolation Using
Catmull-Clark Surfaces.” Siggraph ‘93. p. 35.
Zorin, D. “Stationary Subdivision and Multiresolution Surface Representations.”
Ph.D. diss., California Institute of Technology, 1997
Ignacio Castano, “Next-Generation Rendering of Subdivision Surfaces.” Siggraph
’08, http://developer.nvidia.com/object/siggraph-2008-Subdiv.html
Dennis Zorin’s SIGGRAPH course, “Subdivision for Modeling and Animation”,
http://www.mrl.nyu.edu/publications/subdiv-course2000/

http://developer.nvidia.com/object/siggraph-2008-Subdiv.html
http://www.mrl.nyu.edu/publications/subdiv-course2000/
http://www.mrl.nyu.edu/publications/subdiv-course2000/

