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NURBS patches aren’t the greatest

● NURBS patches are nxm, 
forming a mesh of quadrilaterals.
● What if you wanted triangles or 

pentagons?  
● A NURBS dodecahedron?

● What if you wanted vertices of valence other than 
four?

● NURBS expressions for triangular patches, 
and more, do exist; but they’re cumbersome.



Problems with NURBS patches
● Joining NURBS patches 

with Cn continuity 
across an edge is 
challenging.

● What happens to 
continuity at corners 
where the number of 
patches meeting isn’t 
exactly four?

● Animation is tricky: 
bending and blending 
are doable, but not easy.

Sadly, the world isn’t made up of shapes that 
can always be made from one smoothly-
deformed rectangular surface.



● The solution: 
subdivision surfaces.

Subdivision surfaces

● Beyond shipbuilding: 
we want guaranteed 
continuity, without 
having to build 
everything out of 
rectangular patches.
● Applications include 

CAD/CAM, 3D 
printing, museums and 
scanning, medicine, 
movies…

Geri’s Game, by Pixar (1997)



Subdivision surfaces

● Instead of ticking a parameter t along 
a parametric curve (or the parameters 
u,v over a parametric grid), 
subdivision surfaces repeatedly refine 
from a coarse set of control points.

● Each step of refinement adds new 
faces and vertices.

● The process converges to a smooth 
limit surface.

(Catmull-Clark in action)



Subdivision surfaces – History

● de Rahm described a 2D (curve) subdivision 
scheme in 1947; rediscovered in 1974 by Chaikin

● Concept extended to 3D (surface) schemes by two 
separate groups during 1978:
● Doo and Sabin found a biquadratic surface
● Catmull and Clark found a bicubic surface

● Subsequent work in the 1980s (Loop, 1987; Dyn 
[Butterfly subdivision], 1990) led to tools suitable 
for CAD/CAM and animation



Subdivision surfaces and the movies

● Pixar first demonstrated subdivision 
surfaces in 1997 with Geri’s Game.  
● Up until then they’d done everything in 

NURBS (Toy Story, A Bug’s Life.)
● From 1999 onwards everything they did was 

with subdivision surfaces (Toy Story 2, 
Monsters Inc, Finding Nemo...)

● Two decades on, it’s all heavily customized.
● It’s not clear what Dreamworks uses, 

but they have recent patents on 
subdivision techniques.



Useful terms
● A scheme which describes a 1D curve (even if that curve is 

travelling in 3D space, or higher) is called univariate, referring 
to the fact that the limit curve can be approximated by a 
polynomial in one variable (t).

● A scheme which describes a 2D surface is called bivariate, the 
limit surface can be approximated by a u,v parameterization.

● A scheme which retains and passes through its original control 
points is called an interpolating scheme.

● A scheme which moves away from its 
original control points, converging to a 
limit curve or surface nearby, is called an 
approximating scheme.

Control surface for Geri’s head



How it works

● Example: Chaikin curve subdivision (2D)
● On each edge, insert new control points at ¼ and 

¾ between old vertices; delete the old points
● The limit curve is C1 everywhere (despite the poor 

figure.)



Notation

Chaikin can be written programmatically as:

…where k is the ‘generation’; each generation will 
have twice as many control points as before.
Notice the different treatment of generating odd and 
even control points.
Borders (terminal points) are a special case.

←Even

←Odd



Notation

Chaikin can be written in vector notation as:



Notation
● The standard notation compresses the scheme to a kernel:

● h =(1/4)[…,0,0,1,3,3,1,0,0,…]
● The kernel interlaces the odd and even rules.
● It also makes matrix analysis possible: eigenanalysis of 

the matrix form can be used to prove the continuity of the 
subdivision limit surface.
● The details of analysis are fascinating, lengthy, and sadly 

beyond the scope of this course
● The limit curve of Chaikin is a quadratic B-spline!



Consider the kernel
h=(1/8)[…,0,0,1,4,6,4,1,0,0,…]

You would read this as

The limit curve is provably C2-continuous.

Reading the kernel



Making the jump to 3D: Doo-Sabin

Doo-Sabin takes Chaikin to 3D:
P =(9/16) A + 

(3/16) B + 
(3/16) C + 
(1/16) D

This replaces every old vertex 
with four new vertices.
The limit surface is biquadratic, 
C1 continuous everywhere.

P

A
B

C
D



Doo-Sabin in action

(3) 702 faces(2) 190 faces

(0) 18 faces (1) 54 faces



Catmull-Clark

● Catmull-Clark is a bivariate approximating 
scheme with kernel h=(1/8)[1,4,6,4,1].
● Limit surface is bicubic, C2-continuous.
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Catmull-Clark

Getting tensor again:

Vertex rule Face rule Edge rule



Catmull-Clark in action



Catmull-Clark vs Doo-Sabin

Doo-Sabin

Catmull-Clark



Extraordinary vertices
● Catmull-Clark and Doo-Sabin both 

operate on quadrilateral meshes.
● All faces have four boundary edges
● All vertices have four incident edges

● What happens when the mesh contains 
extraordinary vertices or faces?
● For many schemes, adaptive weights exist 

which can continue to guarantee at least 
some (non-zero) degree of continuity, but 
not always the best possible.

● CC replaces extraordinary faces with 
extraordinary vertices; DS replaces 
extraordinary vertices with extraordinary 
faces.

Detail of Doo-Sabin at cube 
corner



Extraordinary vertices: Catmull-Clark

Catmull-Clark vertex 
rules generalized for 
extraordinary vertices:
● Original vertex:

(4n-7) / 4n
● Immediate neighbors in 

the one-ring:
3/2n2

● Interleaved neighbors in 
the one-ring:

1/4n2

Image source: “Next-Generation Rendering of Subdivision 
Surfaces”, Ignacio Castaño, SIGGRAPH 2008



Schemes for simplicial (triangular) meshes

● Loop scheme: ● Butterfly scheme:
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Loop subdivision

Loop subdivision in action.  The asymmetry is due to the choice of face diagonals.
Image by Matt Fisher, http://www.its.caltech.edu/~matthewf/Chatter/Subdivision.html



Creases

Extensions exist for most schemes to support 
creases, vertices and edges flagged for partial or 
hybrid subdivision.

Still from “Volume 
Enclosed by 
Subdivision Surfaces
with Sharp Creases”
by Jan Hakenberg, 
Ulrich Reif, Scott 
Schaefer, Joe Warren
http://vixra.
org/pdf/1406.
0060v1.pdf

http://vixra.org/pdf/1406.0060v1.pdf
http://vixra.org/pdf/1406.0060v1.pdf
http://vixra.org/pdf/1406.0060v1.pdf
http://vixra.org/pdf/1406.0060v1.pdf


Continuous level of detail

For live applications (e.g. games) can compute 
continuous level of detail, e.g. as a function of 
distance:

Level 5 Level 5.2 Level 5.8



Direct evaluation of the limit surface

● In the 1999 paper Exact Evaluation Of Catmull-
Clark Subdivision Surfaces at Arbitrary Parameter 
Values, Jos Stam (now at Alias|Wavefront) 
describes a method for finding the exact final 
positions of the CC limit surface.
● His method is based on calculating the tangent and normal 

vectors to the limit surface and then shifting the control 
points out to their final positions.

● What’s particularly clever is that he gives exact evaluation 
at the extraordinary vertices.  (Non-trivial.)



Bounding boxes and convex hulls for 
subdivision surfaces
● The limit surface is (the weighted average of (the weighted 

averages of (the weighted averages of (repeat for eternity…)))) 
the original control points.

● This implies that for any scheme where all weights are positive 
and sum to one, the limit surface lies entirely within the 
convex hull of the original control points.

● For schemes with negative weights:
● Let L=maxt Σi |Ni(t)| be the greatest sum throughout parameter 

space of the absolute values of the weights.
● For a scheme with negative weights, L will exceed 1.
● Then the limit surface must lie within the convex hull of the 

original control points, expanded unilaterally by a ratio of (L-1).



Splitting a subdivision surface
Many algorithms rely on subdividing a surface and 
examining the bounding boxes of smaller facets.
● Rendering, ray/surface intersections…

It’s not enough just to delete half your control points: the 
limit surface will change (see right)
● Need to include all control points from the previous 

generation, which influence the limit surface in this 
smaller part.

(Top) 5x Catmull-Clark subdivision of a cube
(Bottom) 5x Catmull-Clark subdivision of two halves of a cube;
the limit surfaces are clearly different.



Ray/surface intersection
● To intersect a ray with a subdivision surface, 

we recursively split and split again, 
discarding all portions of the surface whose 
bounding boxes / convex hulls do not lie on 
the line of the ray.

● Any subsection of the surface which is ‘close 
enough’ to flat is treated as planar and the 
ray/plane intersection test is used.

● This is essentially a binary tree search for the 
nearest point of intersection.  
● You can optimize by sorting your list of 

subsurfaces in increasing order of distance 
from the origin of the ray.



Rendering subdivision surfaces
● The algorithm to render any subdivision surface is exactly the 

same as for Bezier curves:
“If the surface is simple enough, render it directly; 
otherwise split it and recurse.”

● One fast test for “simple enough” is, 
“Is the convex hull of the limit surface 
sufficiently close to flat?”

● Caveat: splitting a surface and 
subdividing one half but not the 
other can lead to tears where 
the different resolutions meet. →



Figure from Generic Mesh Renement on GPU,
Tamy Boubekeur & Christophe Schlick (2005)
LaBRI INRIA CNRS University of Bordeaux, France

Rendering subdivision surfaces on the GPU

● Subdivision algorithms have been ported to the 
GPU, often using geometry shaders.
● This subdivision can be done completely independently of 

geometry, imposing no demands on the CPU.
● Uses a complex blend 

of precalculated weights 
and shader logic

● Impressive effects
in use at id, Valve,
et al



Subdivision Schemes—A partial list
● Approximating

● Quadrilateral
● (1/2)[1,2,1]
● (1/4)[1,3,3,1] 

(Doo-Sabin)
● (1/8)[1,4,6,4,1] 

(Catmull-Clark)
● Mid-Edge

● Triangles
● Loop

● Interpolating
● Quadrilateral

● Kobbelt
● Triangle

● Butterfly
● “√3” Subdivision

Many more exist, some much 
more complex
This is a major topic of 
ongoing research
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